博客
关于我
最近邻插值算法的c++实现(QT框架)
阅读量:765 次
发布时间:2019-03-24

本文共 470 字,大约阅读时间需要 1 分钟。

最近邻插值(KNN)是一种常用的图像处理算法,用于在已知像素点的基础上填充输出图像。这套算法通过像素复制和像素抽样技术,让原本不够大的图像能够在放大或缩小几倍后依然保持良好的图像质量。

假设原图的宽度为 W,高度为 H,而缩放后的图像宽度为 w,高度为 h,那么宽度和高度的缩放比例分别是:

  • 宽度缩放比例:w/W
  • 高度缩放比例:h/H

在实际操作中,KNN算法通过以下步骤来实现图像的高效缩放:

  • 初始化缩放比例:根据目标图像的宽度和高度计算相对于原图的缩放比例。
  • 逐行处理:从目标图像的第一行开始,逐行处理原始图像对应的像素点。
  • 确定对应像素点:通过对当前目标行进行竖直方向的缩放比例计算,找到原始图像中对应的像素行。
  • 逐列复制:根据水平方向的缩放比例,将原始图像对应的像素点逐列复制到目标图像中。
  • 这种方法的核心在于通过简单的算术运算和内存复制操作,实现了对图像按像素水平进行的原始比例保留,从而显著提升了图像缩放时的质量和效率。

    通过以上方法实现的图像缩放既能有效解决图像尺寸调整问题,又能在一定程度上保护图像细节,使其更加清晰和逼真。

    转载地址:http://ebjkk.baihongyu.com/

    你可能感兴趣的文章
    NAT-DDNS内网穿透技术,解决动态域名解析难题
    查看>>
    natapp搭建外网服务器
    查看>>
    NativePHP:使用PHP构建跨平台桌面应用的新框架
    查看>>
    Native方式运行Fabric(非Docker方式)
    查看>>
    Nat、端口映射、内网穿透有什么区别?
    查看>>
    Nat、端口映射、内网穿透有什么区别?
    查看>>
    nat打洞原理和实现
    查看>>
    NAT技术
    查看>>
    NAT模式/路由模式/全路由模式 (转)
    查看>>
    NAT模式下虚拟机centOs和主机ping不通解决方法
    查看>>
    NAT的两种模式SNAT和DNAT,到底有啥区别?
    查看>>
    NAT的全然分析及其UDP穿透的全然解决方式
    查看>>
    NAT类型与NAT模型详解
    查看>>
    NAT网络地址转换配置实战
    查看>>
    NAT网络地址转换配置详解
    查看>>
    navbar navbar-inverse 导航条设置颜色
    查看>>
    Navicat for MySQL 命令列 执行SQL语句 历史日志
    查看>>
    Navicat for MySQL 查看BLOB字段内容
    查看>>
    Navicat for MySQL笔记1
    查看>>
    Navicat for MySQL(Ubuntu)过期解决方法
    查看>>