博客
关于我
最近邻插值算法的c++实现(QT框架)
阅读量:765 次
发布时间:2019-03-24

本文共 470 字,大约阅读时间需要 1 分钟。

最近邻插值(KNN)是一种常用的图像处理算法,用于在已知像素点的基础上填充输出图像。这套算法通过像素复制和像素抽样技术,让原本不够大的图像能够在放大或缩小几倍后依然保持良好的图像质量。

假设原图的宽度为 W,高度为 H,而缩放后的图像宽度为 w,高度为 h,那么宽度和高度的缩放比例分别是:

  • 宽度缩放比例:w/W
  • 高度缩放比例:h/H

在实际操作中,KNN算法通过以下步骤来实现图像的高效缩放:

  • 初始化缩放比例:根据目标图像的宽度和高度计算相对于原图的缩放比例。
  • 逐行处理:从目标图像的第一行开始,逐行处理原始图像对应的像素点。
  • 确定对应像素点:通过对当前目标行进行竖直方向的缩放比例计算,找到原始图像中对应的像素行。
  • 逐列复制:根据水平方向的缩放比例,将原始图像对应的像素点逐列复制到目标图像中。
  • 这种方法的核心在于通过简单的算术运算和内存复制操作,实现了对图像按像素水平进行的原始比例保留,从而显著提升了图像缩放时的质量和效率。

    通过以上方法实现的图像缩放既能有效解决图像尺寸调整问题,又能在一定程度上保护图像细节,使其更加清晰和逼真。

    转载地址:http://ebjkk.baihongyu.com/

    你可能感兴趣的文章
    NetCore 上传,断点续传,可支持流上传
    查看>>
    Netcraft报告: let's encrypt和Comodo发布成千上万的网络钓鱼证书
    查看>>
    Netem功能
    查看>>
    netfilter应用场景
    查看>>
    Netflix:当你按下“播放”的时候发生了什么?
    查看>>
    Netflix推荐系统:从评分预测到消费者法则
    查看>>
    netframework 4.0内置处理JSON对象
    查看>>
    Netgear WN604 downloadFile.php 信息泄露漏洞复现(CVE-2024-6646)
    查看>>
    Netgear wndr3700v2 路由器刷OpenWrt打造全能服务器(十一)备份
    查看>>
    netlink2.6.32内核实现源码
    查看>>
    netmiko 自动判断设备类型python_Python netmiko模块的使用
    查看>>
    NetMizer 日志管理系统 多处前台RCE漏洞复现
    查看>>
    NetMizer-日志管理系统 dologin.php SQL注入漏洞复现(XVE-2024-37672)
    查看>>
    Netpas:不一样的SD-WAN+ 保障网络通讯品质
    查看>>
    netron工具简单使用
    查看>>
    NetScaler MPX Gateway Configuration
    查看>>
    NetScaler的常用配置
    查看>>
    netsh advfirewall
    查看>>